10 research outputs found

    Block preconditioners for mixed-dimensional discretization of flow in fractured porous media

    Get PDF
    In this paper, we are interested in an efficient numerical method for the mixed-dimensional approach to modeling single-phase flow in fractured porous media. The model introduces fractures and their intersections as lower-dimensional structures, and the mortar variable is used for flow coupling between the matrix and fractures. We consider a stable mixed finite element discretization of the problem, which results in a parameter-dependent linear system. For this, we develop block preconditioners based on the well-posedness of the discretization choice. The preconditioned iterative method demonstrates robustness with regard to discretization and physical parameters. The analytical results are verified on several examples of fracture network configurations, and notable results in reduction of number of iterations and computational time are obtained.publishedVersio

    HAZniCS -- Software Components for Multiphysics Problems

    Full text link
    We introduce the software toolbox HAZniCS for solving interface-coupled multiphysics problems. HAZniCS is a suite of modules that combines the well-known FEniCS framework for finite element discretization with solver and graph library HAZmath. The focus of the paper is on the design and implementation of a pool of robust and efficient solver algorithms which tackle issues related to the complex interfacial coupling of the physical problems often encountered in applications in brain biomechanics. The robustness and efficiency of the numerical algorithms and methods is shown in several numerical examples, namely the Darcy-Stokes equations that model flow of cerebrospinal fluid in the human brain and the mixed-dimensional model of electrodiffusion in the brain tissue

    Rational approximation preconditioners for multiphysics problems

    Full text link
    We consider a class of mathematical models describing multiphysics phenomena interacting through interfaces. On such interfaces, the traces of the fields lie (approximately) in the range of a weighted sum of two fractional differential operators. We use a rational function approximation to precondition such operators. We first demonstrate the robustness of the approximation for ordinary functions given by weighted sums of fractional exponents. Additionally, we present more realistic examples utilizing the proposed preconditioning techniques in interface coupling between Darcy and Stokes equations

    Robust Linear Domain Decomposition Schemes for Reduced Nonlinear Fracture Flow Models

    Get PDF
    In this work, we consider compressible single-phase flow problems in a porous medium containing a fracture. In the fracture, a nonlinear pressure-velocity relation is prescribed. Using a non-overlapping domain decomposition procedure, we reformulate the global problem into a nonlinear interface problem. We then introduce two new algorithms that are able to efficiently handle the nonlinearity and the coupling between the fracture and the matrix, both based on linearization by the so-called L-scheme. The first algorithm, named MoLDD, uses the L-scheme to resolve for the nonlinearity, requiring at each iteration to solve the dimensional coupling via a domain decomposition approach. The second algorithm, called ItLDD, uses a sequential approach in which the dimensional coupling is part of the linearization iterations. For both algorithms, the computations are reduced only to the fracture by precomputing, in an offline phase, a multiscale flux basis (the linear Robin-to-Neumann codimensional map), that represent the flux exchange between the fracture and the matrix. We present extensive theoretical findings X and in particular, t. The stability and the convergence of both schemes are obtained, where user-given parameters are optimized to minimize the number of iterations. Examples on two important fracture models are computed with the library PorePy and agree with the developed theory.publishedVersio

    Block preconditioners for mixed-dimensional discretization of flow in fractured porous media

    No full text
    In this paper, we are interested in an efficient numerical method for the mixed-dimensional approach to modeling single-phase flow in fractured porous media. The model introduces fractures and their intersections as lower-dimensional structures, and the mortar variable is used for flow coupling between the matrix and fractures. We consider a stable mixed finite element discretization of the problem, which results in a parameter-dependent linear system. For this, we develop block preconditioners based on the well-posedness of the discretization choice. The preconditioned iterative method demonstrates robustness with regard to discretization and physical parameters. The analytical results are verified on several examples of fracture network configurations, and notable results in reduction of number of iterations and computational time are obtained

    A multiscale flux basis for mortar mixed discretizations of reduced Darcy-Forchheimer fracture models

    No full text
    In this paper, a multiscale flux basis algorithm is developed to efficiently solve a flow problem in fractured porous media. Here, we take into account a mixed-dimensional setting of the discrete fracture matrix model, where the fracture network is represented as lower-dimensional object. We assume the linear Darcy model in the rock matrix and the non-linear Forchheimer model in the fractures. In our formulation, we are able to reformulate the matrix–fracture problem to only the fracture network problem and, therefore, significantly reduce the computational cost. The resulting problem is then a non-linear interface problem that can be solved using a fixed-point or Newton–Krylovmethods, which in each iteration require several solves of Robin problems in the surrounding rock matrices. To achieve this, the flux exchange (a linear Robin-to-Neumann co-dimensional mapping) between the porous medium and the fracture network is done offline by pre-computing a multiscale flux basis that consists of the flux response from each degree of freedom (DOF) on the fracture network. This delivers a conserve for the basis that handles the solutions in the rock matrices for each degree of freedom in the fractures pressure space. Then, any Robin sub-domain problems are replaced by linear combinations of the multiscale flux basis during the interface iteration. The proposed approach is, thus, agnostic to the physical model in the fracture network. Numerical experiments demonstrate the computational gains of pre-computing the flux exchange between the porous medium and the fracture network against standard non-linear domain decomposition approaches

    Mixed-dimensional auxiliary space preconditioners

    Get PDF
    This work introduces nodal auxiliary space preconditioners for discretizations of mixed-dimensional partial differential equations. We first consider the continuous setting and generalize the regular decomposition to this setting. With the use of conforming mixed finite element spaces, we then expand these results to the discrete case and obtain a decomposition in terms of nodal Lagrange elements. In turn, nodal preconditioners are proposed analogous to the auxiliary space preconditioners of Hiptmair and Xu [SIAM J. Numer. Anal., 45 (2007), pp. 2483--2509]. Numerical experiments show the performance of this preconditioner in the context of flow in fractured porous media

    Algebraic multigrid methods for metric-perturbed coupled problems

    Full text link
    We develop multilevel methods for interface-driven multiphysics problems that can be coupled across dimensions and where complexity and strength of the interface coupling deteriorates the performance of standard methods. We focus on solvers based on aggregation-based algebraic multigrid methods with custom smoothers that preserve the coupling information on each coarse level. We prove that with the proper choice of subspace splitting we obtain uniform convergence in discretization and physical parameters in the two-level setting. Additionally, we show parameter robustness and scalability with regards to number of the degrees of freedom of the system on several numerical examples related to the biophysical processes in the brain, namely the electric signalling in excitable tissue modeled by bidomain, EMI and reduced EMI equations

    Robust Linear Domain Decomposition Schemes for Reduced Nonlinear Fracture Flow Models

    No full text
    In this work, we consider compressible single-phase flow problems in a porous medium containing a fracture. In the fracture, a nonlinear pressure-velocity relation is prescribed. Using a non-overlapping domain decomposition procedure, we reformulate the global problem into a nonlinear interface problem. We then introduce two new algorithms that are able to efficiently handle the nonlinearity and the coupling between the fracture and the matrix, both based on linearization by the so-called L-scheme. The first algorithm, named MoLDD, uses the L-scheme to resolve for the nonlinearity, requiring at each iteration to solve the dimensional coupling via a domain decomposition approach. The second algorithm, called ItLDD, uses a sequential approach in which the dimensional coupling is part of the linearization iterations. For both algorithms, the computations are reduced only to the fracture by precomputing, in an offline phase, a multiscale flux basis (the linear Robin-to-Neumann codimensional map), that represent the flux exchange between the fracture and the matrix. We present extensive theoretical findings X and in particular, t. The stability and the convergence of both schemes are obtained, where user-given parameters are optimized to minimize the number of iterations. Examples on two important fracture models are computed with the library PorePy and agree with the developed theory
    corecore